12.185 cursos gratis
8.411.205 alumnos
Facebook Twitter YouTube
Busca cursos gratis:

Capítulo 4:

 Propiedades de los Materiales.(Ópticas I)

Esta es la primera de dos entregas acerca de las propiedades ópticas.

Propiedades ópticas: Se relacionan con la interrelación entre un material y las radiaciones electromagnéticas en forma de ondas o partículas de energía, conocidas como fotones. Estas radiaciones pueden tener características que entren en  nuestro espectro de luz visible, o ser invisibles para el ojo humano. Esta interacción produce una diversidad de efectos, como absorción, transmisión, reflexión, refracción y  un comportamiento electrónico.

Fenómenos Ópticos. Al interactuar con la estructura electrónica o  cristalina de un material, los fotones de una fuente externa crean varios fenómenos ópticos. Si los fotones incidentes interactúan con los electrones de valencia pueden ocurrir varias cosas: los fotones ceden energía al material, en cuyo caso hay absorción; o puede ser que cuando los fotones aportan energía, de inmediato el material emite electrones de idéntica energía, de forma que se produce reflexión. También puede que los fotones no interactúen con la estructura electrónica del material, en ese caso ocurre la transmisión. En cualquiera de estos tres casos, la velocidad de los fotones cambia; este cambio propicia la refracción.

Un rayo incidente de intensidad I0 parcialmente puede reflejarse, absorberse y transmitirse. Esta intensidad I0 se puede expresar como:

I0 = Ir + Ia + It

donde Ir es la porción reflejada, Ia es la parte absorbida e It es la porción transmitida a través del material. Determinar el comportamiento de los fotones respecto al material es necesario conocer varios factores internos de este, particularmente la energía requerida para excitar un electrón hacia un estado de energía más elevado.

Ahora examinaremos cada uno de estos cuatro fenómenos:

- Refracción. Cuando un fotón es transmitido provoca la polarización de electrones en el material y, al interactuar con el material polarizado, pierde parte de su energía. La velocidad de la luz se puede relacionar con la facilidad con la cual un material se polariza tanto eléctricamente (permisividad) como magnéticamente (permeabilidad).

Sin embargo, los materiales ópticos no son magnéticos, por tanto la permeabilidad puede no tomarse en  cuenta.

Dado que la velocidad de los fotones disminuye, cuando el haz entra al material cambia de dirección. Suponiendo que un haz de fotones viaja en el vacío e incide sobre un material, a y b son los ángulos que los haces incidentes y refractados tienen con el plano de la superficie del material, entonces:

n = c = l vacío= sen a

v      l        sen b

La relaciónn es el índice de refracción, c es la velocidad de la luz en el vacío y v la velocidad de la luz dentro del material. Si los fotones viajan en el material 1 y de ahí pasan al material 2, las velocidades de los haces incidentes y refractados dependen de la relación entre sus índices de refracción.

v1 = n1 = sen a

v2    n2     sen b

Con la última expresión de esta igualdad podemos determinar si el haz será transmitido como un haz refractado o si se reflejará. Si el ángulo b es igual a 90°, el haz que viajaba a través del material se refleja.

Cuando el material ser polariza fácilmente habrá más interacción de fotones con  la estructura electrónica del mismo. Entonces, es de esperarse una relación entre el índice de refracción y la constante dieléctrica del material.

- Reflexión. Cuando un haz de fotones golpea un material, éstos interactúan con los electrones de valencia y ceden su energía. Cuando las bandas de valencia no están totalmente ocupadas, cualquier radiación, de casi cualquier longitud de onda, excita a los electrones hacia niveles superiores de energía. Podría esperarse que, si los fotones son totalmente absorbidos, no se reflejaría luz y el material aparecería de color negro. Sin embargo, cuando fotones de longitud casi idéntica vuelven a ser emitidos,  mientras que los electrones excitados regresan a sus niveles inferiores de energía, ocurre la reflexión. Dado que la totalidad del espectro visible se refleja, los materiales con esta propiedad tienen un color blanco o plateado (en los metales).La reflectividad R da la fracción del haz incidente que se refleja y está relacionada con el índice de refracción. Si el material esta en el vacío o en el aire:

R= n-1
     n+1

Si el material está en algún otro medio, con un índice de refracción ni entonces:

R= n- ni 
     n+ni

Los materiales con alto índice de refracción tienen mayor reflectividad que aquellos cuyo índice es bajo. La reflectividad y el índice de refracción varían con la longitud de onda de los fotones.

- Absorción. La porción de haz incidente que no es reflejada por el material esabsorbida o transmitida a través del mismo. La fracción de luz absorbida está relacionada con el espesor del material y la forma en la cual los fotones interactúan con su estructura. La intensidad del haz, después de pasar a través del material, está dada por:

I = I0 exp (-m x)

donde x es la trayectoria a través de la cual se mueven los fotones (por lo general, el espesor del material), m es el coeficiente lineal de absorción del material para los fotones, I0 es la intensidad del haz, después de reflejarse en la superficie delantera,  e I es la intensidad del haz cuando llega a la superficie trasera.

La absorción ocurre debido a varios mecanismos. En la dispersión de Raleigh, el fotón interactúa con electrones en órbita y sufre una deflexión sin cambios de energía; este resultado es más significativo para átomos con alto número atómico y para fotones de baja energía. La dispersión Compton es causada por la interacción entre electrones en órbita y fotones; así, el electrón es expulsado del átomo y, por tanto, consume parte de la energía del fotón. De nuevo, átomos con números atómicos más altos y energías de fotón menores causan mayor dispersión. El efecto fotoeléctrico se presentará cuando al energía del fotón se consuma al romperse la unión entre el electrón y su núcleo.  Conforme la energía del fotón aumenta (reduciendo la longitud de onda), ocurrirá menos absorción, hasta que el fotón tenga una energía igual a la de la unión. A este nivel de energía, el coeficiente de absorción  se incrementa de manera significativa. La energía o longitud de onda a la que esto ocurre se conoce como margen de absorción. Cuando los fotones no interactúan con imperfecciones del materia, se dice que éste es transparente. Éste es el caso del vidrio, cerámicos cristalinos de alta pureza y de polímeros amorfos como acrílicos, policarbonatos y polisulfones.

- Transmisión. La fracción del haz que no ha sido reflejada ni absorbida se transmite a través del material. Podemos determinar la fracción del haz que se ha transmitido por medio de la siguiente ecuación.

It= I0 (1- R )2 exp (-m x)

De nuevo observamos que la intensidad del haz transmitido dependerá de la longitud de onda de los fotones dentro del haz. Si sobre un material incide un haz de luz blanca y se absorben, se reflejan y se transmiten fracciones equivalentes de fotones con longitudes de onda diferentes, el haz transmitido también será de luz blanca. Pero, si los fotones de longitud de onda más larga son absorbidos en mayor proporción que los de longitud de onda más corta, la luz transmitida aparecerá del color de la longitud de onda corta cuya absorción haya sido menor. La transparencia no es otra cosa que la transmisión íntegra de los haces de luz que inciden sobre el material y la intensidad del haz también depende de características microestructurales.

Cuando cualquiera de estos tres fenómenos  ópticos se da de forma que solo fotones con un intervalo específico de longitud de onda son absorbidos, reflejados o transmitidos, se producen propiedades ópticas poco comunes, que se traducen en cambios de color (policromía), colores característicos (como el rojo del láser de rubí dopado), etc.

En el siguiente capítulo continuaremos con el estudio de fenómenos ópticos, esta vez considerando los casos en que los fotones son emitidos por un material.

Nuestras novedades en tu e-mail

Escribe tu e-mail:

Al presionar "Recibir" estás dándote de alta y aceptas las condiciones legales de mailxmail

Cursos similares a Introducción a la Ciencia de los Materiales


  • Vídeo
  • Alumnos
  • Valoración
  • Cursos
1. Antropología social. Introducción
El presente trabajo es un estudio introductorio a la antropología social . Guía... [12/08/11]
50  
2. Metafísica. Ciencia de la filosofía
Qué es la metafísica, la llamada ciencia madre o filosofía primera, y cuál es su... [12/01/09]
678  
3. La teología de la relatividad. Ciencia
Un estudio de la física y el destino de Dios en el pensamiento humano , es el... [15/08/11]
77  

¿Qué es mailxmail.com?|ISSN: 1699-4914|Ayuda
Publicidad|Condiciones legales de mailxmail


¿Recibir novedades de Ciencias? ¡No te costará nada!