12.170 cursos gratis
8.767.824 alumnos
Facebook Twitter YouTube
Busca cursos gratis:

Capýtulo 13:

 El diodo no polarizado

Los semiconductores tipo p y tipo n separados no tienen mucha utilidad, pero si un cristal se dopa de tal forma que una mitad sea tipo n y la otra mitad de tipo p, esa unión pn tiene unas propiedades muy útiles y entre otras cosas forman los "Diodos".

El átomo pentavalente en un cristal de silicio (Si) produce un electrón libre y se puede representar como un signo "+" encerrado en un circulo y con un punto relleno (que sería el electrón) al lado.

El diodo no polarizado

El átomo trivalente sería un signo "-" encerrado en un circulo y con un punto sin rellenar al lado (que simbolizaría un hueco).

El diodo no polarizado

Entonces la representación de un SC tipo n sería:

El diodo no polarizado

Y la de un SC tipo p:

El diodo no polarizado

La unión de las regiones p y n será:

El diodo no polarizado

Al juntar las regiones tipo p y tipo n se crea un "Diodo de unión" o "Unión pn".

a)    Zona de deplexión

Al haber una repulsión mutua, los electrones libres en el lado n se dispersan en cualquier dirección. Algunos electrones libres se difunden y atraviesan la unión, cuando un electrón libre entra en la región p se convierte en un portador minoritario y el electrón cae en un hueco, el hueco desaparece y el electrón libre se convierte en electrón de valencia. Cuando un electrón se difunde a través de la unión crea un par de iones, en el lado n con carga positiva y en el p con carga negativa.

Las parejas de iones positivo y negativo se llaman dipolos, al aumentar los dipolos la región cerca de la unión se vacía de portadores y se crea la llamada "Zona de deplexión".

El diodo no polarizado

b)    Barrera de potencial

Los dipolos tienen un campo eléctrico entre los iones positivo y negativo, y al entrar los electrones libres en la zona de deplexión, el campo eléctrico trata de devolverlos a la zona n. La intensidad del campo eléctrico aumenta con cada electrón que cruza hasta llegar al equilibrio.

El campo eléctrico entre los iones es equivalente a una diferencia de potencial llamada "Barrera de Potencial" que a 25 ºC vale:

0.3 V para diodos de Ge.

0.7 V para diodos de Si.

Polarizar: Poner una pila.
No polarizado: No tiene pila, circuito abierto o en vacío.
z.c.e.: Zona de Carga Espacial o zona de deplexión (W).

El diodo no polarizado

Polarización directa

Si el terminal positivo de la fuente está conectado al material tipo p y el terminal negativo de la fuente está conectado al material tipo n, diremos que estamos en "Polarización Directa".

La conexión en polarización directa tendría esta forma:

El diodo no polarizado

En este caso tenemos una corriente que circula con facilidad, debido a que la fuente obliga a que los electrones libres y huecos fluyan hacia la unión. Al moverse los electrones libres hacia la unión, se crean iones positivos en el extremo derecho de la unión que atraerán a los electrones hacia el cristal desde el circuito externo.

Así los electrones libres pueden abandonar el terminal negativo de la fuente y fluir hacia el extremo derecho del cristal. El sentido de la corriente lo tomaremos siempre contrario al del electrón.

El diodo no polarizado

Lo que le sucede al electrón: Tras abandonar el terminal negativo de la fuente entra por el extremo derecho del cristal. Se desplaza a través de la zona n como electrón libre.

En la unión se recombina con un hueco y se convierte en electrón de valencia. Se desplaza a través de la zona p como electrón de valencia. Tras abandonar el extremo izquierdo del cristal fluye al terminal positivo de la fuente.

Polarización inversa

Se invierte la polaridad de la fuente de continua, el diodo se polariza en inversa, el terminal negativo de la batería conectado al lado p y el positivo al  n, esta conexión se denomina "Polarización Inversa".

En la siguiente figura se muestra una conexión en inversa:

El diodo no polarizado

El terminal negativo de la batería atrae a los huecos y el terminal positivo atrae a los electrones libres, así los huecos y los electrones libres se alejan de la unión y la z.c.e. se ensancha.

A mayor anchura de la z.c.e. mayor diferencia de potencial, la zona de deplexión deja de aumentar cuando su diferencia de potencial es igual a la tensión inversa aplicada (V), entonces los electrones y huecos dejan de alejarse de la unión.

A mayor la tensión inversa aplicada mayor será la z.c.e.

El diodo no polarizado

Existe una pequeña corriente en polarización inversa, porque la energía térmica crea continuamente pares electrón-hueco, lo que hace que halla pequeñas concentraciones de portadores minoritarios a ambos lados, la mayor parte se recombina con los mayoritarios pero los que están en la z.c.e. pueden vivir lo suficiente para cruzar la unión y tenemos así una pequeña corriente.

La zona de deplexión empuja a los electrones hacia la derecha y el hueco a la izquierda, se crea así una la "Corriente Inversa de Saturación"(IS) que depende de la temperatura.

El diodo no polarizado

Además hay otra corriente "Corriente Superficial de Fugas" causada por las impurezas del cristal y las imperfecciones en su estructura interna. Esta corriente depende de la tensión de la pila (V ó VP).

El diodo no polarizado

Entonces la corriente en inversa (I ó IR) será la suma de esas dos corrientes:

El diodo no polarizado

Capýtulo siguiente - Ruptura
Capýtulo anterior - Semiconductores extrínsecos

Nuestras novedades en tu e-mail

Escribe tu e-mail:



MailxMail tratarý tus datos para realizar acciones promocionales (výa email y/o telýfono).
En la polýtica de privacidad conocerýs tu derechos y gestionarýs la baja.

Cursos similares a Electronica básica (1/3). Símbolos, componentes, niveles y bandas de energía



  • Výdeo
  • Alumnos
  • Valoraciýn
  • Cursos
1. Electronica básica (2/3). Diodo y filtro por condensador
Electrónica básica . Aprende a identificar los componentes, su impedancia, y darles... [03/09/09]
5.099  
2. La oferta monetaria y sus componentes. Economía básica
Este curso tiene como objetivo facilitar el aprendizaje mediante una propuesta de... [09/02/12]
16  
3. Cálculo de componentes de transmisiones mecánicas
Cálculo de elementos de máquinas y diseño de las transmisiones mecánicas de las... [19/05/09]
7.114  

ýQuý es mailxmail.com?|ISSN: 1699-4914|Ayuda
Publicidad|Condiciones legales de mailxmail